HEe detailed explanation concerning the operation of
TUNIT “A” is continued in this month’s article,
with further practical examples.

We resume by considering the use of the operational
amplifier as an integrator.

An operational amplifier will be handling time as well
as voltage when acting as an integrator, SO some means
must be found of inserting intervals of time onto the
computer. One method is to employ external oscil-
lators to provide known functions of time in terms of
frequency. An input to an integrator might consist
of a steady d.c. voltage which is switched on for a time ¢
(step function or square wave), or alternatively, a sinu-
soidal voltage of frequency fand period 1/f.

If a graph is drawn of the resulting integrator output
function, and this is the form that answers to problems
involving change or motion will usually take, the X axis
of the graph will be calibrated in intervals of time, with
voltage on the Y axis. It follows that an oscilloscope,
which also uses time on the X axis and voltage on the
Y axis, can provide a convenient form of output dis-
play, especially when an integrator is operating at high
speed. 2

The operational amplifier is converted to an inte-
grator when a capacitor Ct is inserted, in place of a
resistor, in the feedback path; see Fig. 5.1. When an
input voltage —FEin is applied to the integrator by
means of a simple switch S for a time ¢, the output Eo
will take the form of an increasing ramp voltage pro-
portional to # with slope
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Note that the operational amplifier will continue to
invert an input voltage even when used as an integrator.

ANALOGU
OMIPUTT

THE INTEGRATOR IN EQUATION
SOLVING

The electronic analogue computer does provide a
powerful technique for obtaining rapid solutions to
problems involving calculus, which cannot be equalled
either by numerical methods or by a digital computer.

If differentiation and integration are regarded as
straightforward mathematical operations, it will be
found that the terms of, say, a second order differential
equation can be manipulated on the computer in much
the same way as the terms of a *“‘steady state” algebraic
equation.

For example, when an equation term y is differen-
tiated against time its derivative dy/dt is obtained, and
a second differentiation yields the second derivative
d?y/de®. The reverse process is where integration of the
second derivative d?y/dt* produces the first derivative
dy/dt, and another integration gives y as the result.

Fig. 5.2 shows how a simple integrator can handle
equation terms. Combined operations are made
possible by cascading integrators, while using coefficient
potentiometers and computing component ratios for
summation, multiplication, and division (Fig. 4.1).

The process of differentiation, although feasible if
care is taken, is generally avoided on analogue com-
puters because it gives rise to unstable operational .
amplifier configurations, but this imposes only a slight
limitation since integration can be employed—in the
majority of cases—in place of differentiation.

INTEGRATOR ACCURACY

The transfer accuracy of an operational amplifier,
when it is used as an integrator, will be theoretically
limited by its finite value of open-loop gain. However,
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the situation is much more complicated than with, for
example, a summing amplifier (Fig. 3.8) since the
amplifier error can no longer be defined in terms of the
sirpple relationship between closed-loop and open-loop
gains.

As a guiding principle, integrating amplifiers may
have very large values of closed-loop gain provided
that the time ¢ of an input function remains small.
Closed-loop integrator gains of 1,000 or more are not
uncommon in transistor computers, since low voltages
and low impedances discourage the use of computing
resistors of more than 100 kilohm, and capacitors of
more than 1xF are too bulky. Table 5.1 is calculated
for UNIT *“A” amplifiers, and sets out the maximum
allowable interval ¢ for selected values-of Cr and Rin,
where the amplifier transfer error must not exceed
one per cent.

Errors due to unwanted drift voltages also become
significant when ¢ is long and C is small. The greatest
care must be exercised when zero-setting integrators to
eliminate offset voltages, for good accuracy at long
time intervals. Also, the computer should not be
subjected to fluctuations of ambient temperature when
computations cover several hours of integrator use.

COMPUTING CAPACITORS

The computing capacitors used for PEAC will
normally lie within the range 0:01-1xF, and the three
values most commonly employed are 0-01xF, 0-1xF,
and 1xF. Polystyrene is the preferred capacitor
dielectric, for high insulation resistance, but polyester
makes an acceptable second best. Mica, paper, and
ceramic capacitors should be avoided.

Small value polystyrene capacitors of -1 per cent
and +2 per cent tolerance are easily obtained, but
0-1xF and 1xF precision components are rare and
expensive. To get around this difficulty, the bridge
circuit of Fig. 5.3 was devised to allow computing
capacitors to be made up from specially selected low
cost 4-20 per cent capacitors.

The circuit of Fig. 5.3 can be constructed in bread-
board form on Verobo6ard or s.r.b.p., with miniature
sockets to take Cx and R1. If an audio signal gener-
ator is not available to supply the bridge with about
10V r.m.s. at 1kHz, a signal could be obtained from a
transistor multivibrator powered by the 25V computer
power supply. Headphones serve to detect the null
point when the bridge is in balance, and should have
an impedance of about 2 kilohms. -

The method of making up a computing capacitor of,
say, 1uF is as follows. A capacitor panel of plain or
gerforated s.r.b.p. is fitted with small turret tags as in

ig. 5.4. A 420 per cent capacitor of about 0-68xF is
wired into position on the capacitor panel before it is
plugged into the bridge Cx sockets, and a 1 kilohm

Cy

S

S Rin

Eo=-£jp Rm'—cf VOLTS /SEC

Fig. 5.1. The operational amplifier as an integrator
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Fig. 5.2. The handling of equation terms by a simple
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Fig. 5.3. Bridge circuit used for making up computing
capacitors
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Fig. 5.4. Computing capacitor plug-in panel
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resistor is inserted for R1. Assorted polystyrene or
good quality polyester capacitors of lower value are
then temporarily connected across the capacitor panel
to increase Cx by small increments, while listening on
the headphones for a drop in the level of the 1kHz
tone as Cx approaches 1xF.

A typical computing capacitor might finally consist of
a parallel combination of the following values, 0-68uF,
0-224F, 0-02uF, and 0-0054F.

If the required value of Cx is exceeded, the note in
the headphones will increase in volume when the null
point is passed. Allow capacitors to cool off after
soldering, and before making a measurement, as heat
can cause a temporary or permanent change in capaci-
tance. With the Fig. 5.3 bridge circuit it is possible
to detect increments of less than 0-01xF in a nominal
14F capacitor. -

DIFFERENTIAL ANALYSIS WITH
UNIT “A”

A second order linear differential equation with
constant coefficients has become firmly established as
the “classic” introduction to differential analysis on
the analogue computer.

The equation describes an oscillatory system with
variable damping which can be used to simulate
indirectly many physical systems, such as the spring
pendulum, a tuned LC circuit, or a servomechanism.
Also, the equation is easy to set up on the computer,
and does not necessarily demand the use of integrator
mode switching.,

In general form the equation is,

d? d
ey +bg +o=f0) (Ea5D)
where a, b, and ¢ are the constant coefficients, y is
unknown, and f(¢) represents some function of time.
Equation 5.1 can be rewritten to suit a particular
system by substituting appropriate terms.

Spring pendulum
dy dy
m gz +’“(Tt_+ky:f(t)
(Eq. 5.2)

where m is the mass of a weight suspended on a spring
of constant k, which is damped by friction #. The
weight is displaced by an amount y when subjected to a
force dependent on f(¢).

Tuned LC circuit

d? do 1
L—(u—ngR—a—? +‘E.Q:f(t) (Eq.-53)

where L is an inductance tuned by a capacitance C, and
damped by a series resistance R. Q is the charge in
coulombs on C at any instant of time. The current
flowing in the tuned circuit is given by dQ/dt, and f (¢)
represents an input function.

Servomechanism

20 )

tt.f 4 28w th" + w20y == w?;
where 0, is the angular displacement of the output
shaft, ¢ the damping factor,  the angular velocity, and
6; the angular displacement of the input shaft.

The obvious similarity between the above equations is
emphasised when, in Fig. 5.5, it is seen that they all have
virtually the same problem layout on the computer.

(Eq. 5.4)
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Furthermore, as the computer will allow operation at
almost any fraction or multiple of real time, a spring

. pendulum and a tuned LC circuit can be simulated

simultaneously, and interesting electro-mechanical
parallels can be seen to exist between the properties of
inductance and mass, resistance and friction, and capa-
citance and elasticity.

The only real difference between the analogous
behaviour of a weight on a spring, a servo shaft, and a
tuned LC circuit is that the LC combination will nor-
mally resonate at a much higher frequency.

PROBLEM EXAMPLE 3.
TUNED CIRCUIT ANALYSIS

UNIT “A” will simulate any series tuned circuit by
solving Equation 5.2, and will give answers in the form
of a.c. meter readings or oscillograms. Tuned circuits
resonating in the MHz region are catered for by slowing
down the problem to some convenient decadal fraction
of real time, so that a simulated circuit on the computer
which is, for example, resonating at 300Hz, will serve
as a model for a real circuit resonating at 30MHz, with
suitable rescaling of L, C, and ¢.

To initially determine the relative values of L, C, R,
voltage V, and current I, without too much paperwork,
it is helpful to start with a representative tuned circuit
which allows computer operation in real time, at
frequencies convenient for display by an a.c. voltmeter
or an oscilloscope. 50Hz is a good frequency to
employ as a datum because it can be readily obtained
from the mains supply, and rounded values of L = 1H
and C = 10xF will also offer resonance at 50Hz.

Taking the circuit of Fig. 5.6a as a starting point,
from the knowledge that a series tuned circuit will
exhibit an impedance equal to R at resonance, the
r.m.s. current flow at 50Hz will be Ei/R, or 20mA when
E; = 2V r.m.s. and R = 100 ohms.

It is necessary to rearrange the basic equation,
Equation 5.2, for the computer by dividing through by
L, and solving for the second derivative.

d2Q RdQ 1  f@)

—&t—a:——ZHi—I'J—C-F—L— (Eq.5.5)
Substituting known values from Fig. 5.6a,
d*Q 100R dQ 1 f@
- TH & Hxioc?tin
(Eq. 5.6)

f(¢) in the present case represents a sine wave input of
72V r.m.s. In other circumstances the input function
could be a square wave of amplitude Ei, and period 2¢.

Equation 5.6 is solved on the computer by successive
integration. Looking at the symbolised diagram of
Fig. 5.6b, it can be seen that there are two closed-loops,
one linking the output of OA1 via CP1 to OA1/Input L
and the other passing through OAl, OA2, and OA3,
via CP2, and thence back to OAl /Input 3. The
coefficient of CP1 will be multiplied by the gain factor
associated with OAIl/Input 1. .CP2 coefficient is
multiplied by the product of gains OA1/Input 3, OA2,
and OA3, i.e. 1,000 x 100x 1 = 100,000.

d2Q/dr?, obtained from the sum of the voltages
present at the inputs of OAl, is initially assumed to be
present. After one integration OA1 provides an
output dQ/dt, and from this all the terms on the right
hand side of Equation 5.6 are assembled. So, dQ/dt is
multiplied by R/L = 100, using CP1 set for a coefficient
of 01, and is taken back to OAl/Input 1 where it is then
added to f(¢)/L = 2V r.m.s.




-

Moving in the other direction on the symbolised
diagram of Fig. 5.6b, dQ/dt is integrated by OA2 to
obtain +Q. Inverting amplifier OA3 changes the
sign of Q before passing it on for multiplication by
1/LC = 100,000 (CP2 coefficient of 1). — (1/LC)Q is
then added, at OA1/Input 3, to

RdQ  fa)

L dt L

and the sum of all OA1l input voltages yields the re-
quired d2Q/d¢2. Because there are two closed-loops

.in the computer set-up the equation will be self-

enforcing.

Routine. Switch on UNIT “A” power supply and
allow a warm-up time of at least 15 minutes. Ensure
that the three operational amplifiers are disconnected
from their summer networks, and have no feedback
components. Apply 10V d.c. voltmeter leads to
OA1/SK13 and an earth socket, and zero-set OA1 for

an output voltage of less than -+ 1V from the back of the
UNIT “A” box, by means of VR1 (Fig. 3.7). Repeat
for OA2 and OA3.

Set up the problem according to the patching circuit
of Fig. 5.6b, but omit the feedback capacitors and the
patching link between OA3/SK13 and CP2/SKI.
Set CP1 dial to approximately “1”. Connect the volt-
meter to miniature socket OA1/SK6 (Fig. 2.9) and
zero-set OA1 again, but this time using the front
panel control VR15.

Next, zero-set OA2 using VR16, and OA3 using
VR17. Insert 0-1#F computing capacitors into OAl/
SK11 and SK12, and OA2/SK11 and SK12, and make
good the link between OA3 output and CP2. Set CP2
for a dial reading of “10”. Apply the voltmeter to
OA2/SK7 and zero-set the complete assembly of
amplifiers by adjustment of VR15(0OA1) only.

The problem layout will now be ready for dynamic
checks and should not need to be re-zeroed for several
hours if UNIT “A” is being operated in stable ambient
temperature conditions.
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Fig. 5.5. A second order differential equation applied to physical systems
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Sinusoidal input. Voltage and
current in phase when tuned
circuit is at resonance

Step input.

Step input (square wave). Critical

: /L Step input. Tuned circuit under-
damping when R = 2\,“ T damped when R is decreased

Tuned circuit over-

damped when R Is increased

Step input. Tuned circuit un-
damped whenR = O. Sustained
oscillation at resonant frequency

Current flow in under-damped
tuned circuit, in response to a
step function

Fig. 5.7. Response of a simulated tuned circuit

Apply a 2V r.m.s. 50Hz signal to OA1 /Input 2, and
monitor by means of a reliable 10V a.c. meter of not
less than 1 kilohm/volt sensitivity. The input function
should preferably come from a low impedarnce source
to avoid serious loading errors when the voltmeter is
removed. Next, connect the a.c. voltmeter to the out-
put.of OA1 and adjust CP1 so that OA1l input and
output voltages are exactly equal. CP1 could alterna-
tively be set by the reference voltage and d.c. voltmeter
method mentioned earlier, for a coefficient of 0-1. If
the CP2 setting is altered it will be discovered that the
simulated circuit goes off resonance, and can be tuned
by CP2 between approximately 5Hz and 50Hz.

UNIT “A” will now be ready for analysis of the
Fig. 5.6a tuned circuit, and will also cover a useful
range of other values for L, C, and R in real time.

When handling sinusoidal or step functions, an
amplifier will still have a maximum output voltage
swing of 410V, but this will be the peak voltage value.
To check for overloading with an a.c. meter, ensure
that amplifier output voltages do not exceed 7-07V
r.m.s. for a sine wave function, and 5V mean for an
equal mark-space square wave.

RESCALING PROBLEM EXAMPLE 3.

To rescale the problem for larger or smaller values
of L and C, beyond the coverage of CP2, and by
abandoning real time operation, note that a tenfold
increase in tuned circuit frequency corresponds to a
hundredfold increase in 1/LC. For most applications,
where the series resistance R will lie between zero and
just beyond critical damping (R>24/[L/C]), the scaling
of R/L can stay as it is for all reasonable values of
L and C, but should anyway only be changed by adjust-
ment of the gain factor at OA1/Input 1. Similarly, the
J(#)/L gain of 100 at OA1/Input 2 can remain fixed.

It is not necessary to use inconveniently large or
small input functions when rescaling for new voltages
and currents. 2V r.m.s. could equally well represent an
input function of, say, 0-2V r.m.s., and from Ohm’s
Law the current / will automatically become 2mA,
instead of the former 20mA, even though it is still
represented by 2 computer volts.

If it is desired to extend the computer operating time,
by adjustment of integrator and inverting - amplifier
closed-loop gains, refer to Table 5.2, while remembering
that integrator closed-loop gains are calculated on the
basis of 1/RinCt where R is in ohms and C is in farads. :

For reasons of reduced accuracy, it is not advisable
to use computer operating frequencies above 1kHz or
below 0-05Hz in connection with Problem Example 3.
It should be mentioned that although frequencies in the
region of 0-05Hz are too low for display on an a.c.
coupled oscilloscope, the behaviour of a system can be
demonstrated in slow motion by the oscillating move-
ment of a d.c. voltmeter pointer (centre-zero).

Some typical oscillograms are given in Fig. 5.7 to
show the response of a simulated tuned circuit. If the
computer oscilloscope is provided with a good graticule,
and has a linear response, amplitude and time measure-
ments which are accurate to within approximately
5 per cent may be obtained straight from the trace.

The behaviour of a real tuned circuit can be evaluated
by comparison with a simulated circuit. A tracing is
made of the real circuit oscilloscope display, and is then
superimposed on the readout given by the simulated
circuit. The computer is adjusted so that time scales
are related by a known factor, and tracing and readout
display are identical, then quantitative measurements

- are taken from the computer voltages and dial settings.

Next month: The construction and operation
of UNIT «“B”
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